skip to main content


Search for: All records

Creators/Authors contains: "Alexeev, Vladimir A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Observations show increases in river discharge to the Arctic Ocean especially in winter over the last decades but the physical mechanisms driving these changes are not yet fully understood. We hypothesize that even in the absence of a precipitation increase, permafrost degradation alone can lead to increased annual river runoff. To test this hypothesis we perform 12 millennium-long simulations over an idealized hypothetical watershed (1 km 2 ) using a distributed, physically based water balance model (Water flow and Balance Simulation Model, WaSiM). The model is forced by both a hypothetical warming defined by an air temperature increase of 7.5 ∘ C over 100 years, and a corresponding cooling scenario. To assess model sensitivity we vary soil saturated hydraulic conductivity and lateral subsurface flow configuration. Under the warming scenario, changes in subsurface water transport due to ground temperature changes result in a 7%–14% increase in annual runoff accompanied by a 6%–20% decrease in evapotranspiration. The increase in runoff is most pronounced in winter. Hence, the simulations demonstrate that changes in permafrost characteristics due to climate warming and associated changes in evapotranspiration provide a plausible mechanism for the observed runoff increases in Arctic watersheds. In addition, our experiments show that when lateral subsurface moisture transport is not included, as commonly done in global-scale Earth System Models, the equilibrium water balance in response to the warming or cooling is similar to the water balance in simulations where lateral subsurface transport is included. However, the transient changes in water balance components prior to reaching equilibrium differ greatly between the two. For example, for high saturated hydraulic conductivity only when lateral subsurface transport is considered, a period of decreased runoff occurs immediately after the warming. This period is characterized by a positive change in soil moisture storage caused by the soil moisture deficit developed during prior cooling. 
    more » « less
  2. Abstract

    On the Arctic Coastal Plain (ACP) in northern Alaska (USA), permafrost and abundant surface‐water storage define watershed hydrological processes. In the last decades, the ACP landscape experienced extreme climate events and increased lake water withdrawal (LWW) for infrastructure construction, primarily ice roads and industrial operations. However, their potential (combined) effects on streamflow are relatively underexplored. Here, we applied the process‐based, spatially distributed hydrological and thermal Water Balance Simulation Model (10 m spatial resolution) to the 30 km2Crea Creek watershed located on the ACP. The impacts of documented seasonal climate extremes and LWW were evaluated on seasonal runoff (May–August), including minimum 7‐day mean flow (MQ7), the recovery time of MQ7 to pre‐perturbation conditions, and the duration of streamflow conditions that prevents fish passage. Low‐rainfall scenarios (21% of normal, one to three summers in a row) caused a larger reduction in MQ7 (−56% to −69%) than LWW alone (−44% to −58%). Decadal‐long consecutive LWW under average climate conditions resulted in a new equilibrium in low flow and seasonal runoff after 3 years that included a disconnected stream network, a reduced watershed contributing area (54% of total watershed area), and limited fish passage of 20 days (vs. 6 days under control conditions) throughout summer. Our results highlight that, even under current average climatic conditions, LWW is not offset by same‐year snowmelt as currently assumed in land management regulations. Effective land management would therefore benefit from considering the combined impact of climate change and industrial LWWs.

     
    more » « less
  3. This model‐based study assesses the response of the lower atmosphere and near‐surface permafrost on the North Slope of Alaska to projections in sea ice decline. The Weather Research and Forecast model, with polar optimization (polar WRF), was configured for the North Slope of Alaska and the adjacent Arctic Ocean and run for two decade‐long control periods, the 1970s and the 2040s. Community Earth System Model output was used to drive the polar WRF model. By swapping the sea ice coverage in the control cases, two polar WRF sensitivity experiments were designed to quantify the changes in the low atmosphere and near‐surface permafrost in response to projected declines in sea ice extent. The strongest impacts of sea ice decline occur primarily during the late fall and early winter. These include increases in surface air temperature, surface humidity, total cloud cover, and precipitation amount. Future impacts of sea ice decline are projected to become weaker over time in the late fall and early winter while becoming more prominent in late spring and early summer. Projected sea ice decline also inhibits low‐level cloud formation in summer as a result of destabilization of the boundary layer. Sensitivity experiments by polar WRF and Geophysical Institute Permafrost Laboratory model, respectively, suggest that sea ice decline explains approximately 20% of both the atmospheric and permafrost warmings on a mean annual basis compared to the overall projected warming under the RCP4.5 scenario.

     
    more » « less